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ABSTRACT
We propose and demonstrate a computational imaging technique that uses structured illumination 
based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel 
detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying 
an inverse cosine transform to the spectra obtained from the single-pixel detector a full-colour 
image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the 
background noise is easily cancelled to give excellent image quality. Moreover, the experimental 
set-up is very simple.

1.  Introduction

Ghost imaging (GI), a non-local imaging method whereby 
an object is reconstructed by means of intensity corre-
lation between the object beam and a corresponding  
reference beam has attracted considerable attention in 
recent years. The first such experiment was performed 
using entangled photon pairs obtained by spontaneous 
parametric downconversion (1). Later, GI was realized 
using pseudothermal light (2–7) and true thermal light 
(8–10). Though the light sources may be different, con-
ventional GI requires a beam splitter to produce correlated 
light fields in two separate beams, one beam passing via 
the object to a bucket detector collecting only the total 
light intensity, and the other measured directly by a detec-
tor with spatial resolution.

Computational GI, proposed in 2008 (11), eliminated 
the need for a beam splitter by a spatial light modula-
tor capable of creating deterministic speckle patterns to 
illuminate the object (12,13). This system is more prac-
tical and suitable for remote sensing since the high res-
olution detector in the reference beam is replaced by a 
computer-generated propagating field. In GI a ghost image 
of the object is retrieved by correlating the object beam 
with the reference beam, but in computational GI the 
measurements recorded by the bucket (single-pixel) detec-
tor in the object beam are convoluted with precomputed 
intensity distribution patterns.

When combined with compressive sensing (also 
known as compressive sampling) (14–16), GI can recon-
struct an image from the data sampled at sub-Nyquist 
frequencies, and can retrieve an image consisting of N2 
pixels using much fewer than N2 measurements with a 
single-pixel detector (17). Compressed sensing exploits 
the redundancy in the structure of most natural objects 
to reduce the number of measurements required, and is 
widely applied in the field of computational imaging.

Recently, a new computational imaging technique 
was proposed by Zhang et al. (18), which can reconstruct 
high-quality images by acquiring their Fourier spectrum. 
Employing an approach called four-step phase-shifting 
sinusoidal illumination, and after illuminating a scene 
with four two-dimensional (2D) sinusoid patterns, each 
coefficient of the scene’s Fourier spectrum is acquired by 
four responses. The image is then reconstructed by apply-
ing an inverse Fourier transform. This is a compressive 
sampling-like approach, since most natural images are 
sparse in the Fourier domain. For image reconstruction, 
only the light intensities collected by the bucket detector 
need to be considered, without the need to correlate with 
the precomputed illumination patterns, which are recov-
ered in the inverse Fourier processing.

In this paper, we propose a different full-colour  
computational imaging method using a single-pixel detec-
tor based on a 2D discrete cosine transform (DCT), which 
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We simplify Equations (1) and (2) into the two equations 
below in order to describe our technique more effectively:

 

 

where DCT represents the DCT and IDCT is the inverse 
transform. One of the key steps of our technique is to 
realize the IDCT physically to obtain the spectral com-
ponents. However, the DCT in the above equation is a 2D 
orthogonal product of two cosine functions and contains 
a considerable amount of negative numbers. Therefore, we 
add a constant term a to both sides, equal to the average 
intensity of the image. This makes all elements natural 
numbers, as shown by Equations (5) and (6), where b rep-
resents the contrast. Then, the DCT coefficients of the 
object can be obtained by Equation (7). The background 
illumination e that exists in the experiment is added to 
Equations (5) and (6) as a constant, so the constant a and 
the background illumination value b are effectively can-
celled out. We thus have

 

 

 

The multiplier of f(x, y) in Equations (5) and (6) can 
be expressed as in the Equations (8) and (9) below, 
respectively:

 

 

where P1(u, v) and P2(u, v) are two patterns with the spa-
tial frequencies (u, v). Figure 1(a) and (b) show part of 
the two sets of the illumination patterns generated from 
Equations (8) and (9), respectively. The patterns are a 
combination of horizontal and vertical frequencies for 
a 64  ×  64 (M  =  N  =  64) 2D DCT. Each step from left 
to right and top to bottom is an increase in frequency 
of 1/2 cycle. For example, moving right (or down) one 
step from the top-left square yields a half-cycle increase 
in the horizontal (or vertical) frequency. The source data 
(64 × 64) are transformed to a linear combination of these 

(3)F(u, v) = DCT ⋅ f (x, y)

(4)I(x, y) = DCT ⋅ F(u, v)

(5)F1(u, v) = (a + b ⋅ DCT) ⋅ f (x, y) + e

(6)F2(u, v) = (a − b ⋅ DCT) ⋅ f (x, y) + e
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is simpler and requires fewer measurements. The spectral 
coefficients can be obtained after illuminating the scene 
with only two groups of orthogonal sinusoidal patterns, 
allowing each coefficient to be acquired from just two 
responses. The image can then be retrieved by applying 
an inverse cosine transform to the spectrum acquired. 
Since this transform provides the same features of energy 
compaction as a discrete Fourier transform for most nat-
ural images (19), our technique is also a compressive 
sampling-like approach, which means an image can be 
reconstructed from only a few coefficients of the spectrum 
collected by the single-pixel detector.

2.  Theory

The object or target scene is illuminated by a projector 
with two sets of orthogonal sinusoidal patterns, and 
the reflected field intensity is collected by a single-pixel 
detector. Every coefficient of the image’s cosine transform 
spectrum is acquired from the two detector responses cor-
responding to the two patterns. The scene is retrieved by 
applying the inverse DCT algorithm to the cosine trans-
form spectrum. The final image’s signal-to-noise ratio is 
very good, since any unwanted background illumination 
is automatically cancelled, as will be shown below.

The cosine transform employed by Ahmed et al. (20) 
expresses a finite sequence of data points in terms of a 
sum of cosine functions of different frequencies, and has 
found wide application in transform image coding. It is 
the foundation of the JPEG standard for still image coding 
and the MPEG standard for moving images.

The 2D DCT and inverse DCT of an image array are 
defined in series form as (19)

 

 

Here, C(0) = (2)−1/2 and C(w) = 1 for w = 1, 2, …, N − 1, 
and f(x, y) is the spatial distribution of the original image 
with M × N pixel resolution, which also represents the 
image of the target scene as described in the latter part of 
this paper; F(u, v) is the frequency spectrum of the trans-
formation where u and v are the horizontal and vertical 
spatial frequencies, respectively. The reconstructed image 
I(x, y) is obtained by applying the inverse DCT.
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64 horizontal and vertical frequencies. By employing the 
inverse 2D DCT algorithm of Equation (4), the original 
image can be reconstructed by the computer.

The imaging process of our proposed system can be 
divided into five modules, as shown in Figure 2. A pro-
jector directs the patterns generated by a computer onto 
the target scene, and the single-pixel detector measures 
the reflected light from the target scene in synchronization 
and transfers it to an image reconstructor. The two sets of 
field intensity measurements at the detector, D1(u, v) and 
D2(u, v), both have spatial frequencies of (u, v). Since the 
multiplication of F(u, v) by a constant makes no difference to 
the reconstruction of the image by the inverse DCT, F(u, v) 
can be calculated from Equation (10). The image of the 
target scene can then be reconstructed from Equation (2)  
by substituting.

 

Since DCT has a strong ‘energy compaction’ property 
(19,21), most of the signal information tends to be con-
centrated in a few low-frequency components, allowing 
the small high-frequency components to be discarded. 
Thus, the technique proposed here is somewhat similar to 
a compressive sampling approach in that the image can be 
reconstructed with only a fraction of the spectra.

3.  Experimental setup

The set-up for this experiment is shown in Figure 3. A digital 
light projector (BENQ MS513P) provides sinusoidal orthog-
onally structured patterns to illuminate a 3D scene consisting 

of a flower in front of a background picture 12 × 12 cm in 
size at a distance of about 120 cm. The main components of 
the projector are a digital micro-mirror array, a high voltage 
mercury lamp and a lens of 55 mm focal length. The light 
reflected from the scene is directed onto a CMOS sensor with 
a Bayer filter (Basler acA1920-155uc) which detects red (R), 
green (G) and blue (B) with different filters at different pixels. 
The signals from all the colour channels are recorded in the 
computer, and the full-colour image is reconstructed by the 
algorithm shown above.

(10)F(u, v) = D1(u, v) − D2(u, v)

Figure 1.  Part of the two sets of illumination patterns for 
M  =  N  =  64 used in this paper. (a) Patterns generated from 
Equation (5), (b) Patterns generated from Equation (6).

Patterns
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Figure 2. Procedure of computational imaging with single-pixel detectors based on 2D DCT.

Figure 3. Experimental system for imaging a coloured 3D scene. 
The projector illuminates the scene with two sets of orthogonal 
patterns. The distance L between the projector and target scene 
is about 120 cm.
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times, for the case of M = N = 64. The integrated intensities 
of the reflected field were measured 64 × 64 × 2 times, 
accordingly. The spectrum of each image can be calculated 
quickly by Equation (8). The size of the illumination pat-
terns and final reconstruction was 64 × 64 pixels. The red, 
green and blue images of the scene are reconstructed by 
the algorithm based on the 2D DCT, as described above. 
The entire full-colour image with all the colours combined 
is shown in Figure 4(a). Figure 4(b)–(d) show the red, 
green and blue reconstructions, respectively. It should be 
noted that the results retrieved from any one of the three 
colours are graded in tone.

Figure 3(e)–(h) shows the density distributions of the 
cosine transform spectra for the three colours acquired 
with different spectral coverages of 1.56, 9.76, 25 and 
100%, respectively. Since the scene image is sparse in the 
frequency domain, the image energy spectra, as we can 
see, is concentrated in the top left-hand corner of the full 
spectra, where the low-frequency components are located. 
Figure 3(i)–(l) are the reconstructed images with the same 
spectral coverage of red, green and blue corresponding 
to Figure 3(e)–(h). It is evident that the quality improves 
as the covering spectrum increases. The image is already 
recognizable when the coverage reaches 9.76%, which 
means that an image with 64 × 64 pixel resolution can be 
retrieved from 400 × 2 measurements by our technique.

For a quantitative comparison of the image quality, we 
introduce the peak signal-to-noise ratio (PSNR) to esti-
mate the performance of our 2D computational imaging 
DCT (CIDCT) method:

where U0 is the original image of the target scene con-
sisting of M  ×  N pixels, U is the retrieved image and 
MAXI = 255 is the maximum pixel value of the image. 
Naturally, the larger the PSNR value, the better the qual-
ity of the image recovered. The PSNR values of the red, 
green and blue components (marked as CIDCT R, CIDCT 
G and CIDCT B, respectively) for the different sampling 
coverages of the spectra in Figure 4(e)–(h) are shown in 
Figure 5. The PSNRs of the three components are 22.27, 
21.42 and 21.29 dB, respectively, at a sampling coverage 
of 9.76%, which are acceptable values for recognizing the 
objects in the scene. When the sampling coverage exceeds 
61.04%, our method could obtain high-quality images of 
the scene with the PSNRs larger than 30 dB.

We compare our CIDCT method with the following 
three methods: differential ghost imaging (DGI) (6), sin-
gle-pixel imaging via compressive sampling (SICS) (15) 
and Fourier spectrum single-pixel imaging (FSSI) (18).  
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To synchronize the system, we designed the data col-
lecting program written in C++ language using Microsoft 
Visual Studio, so that we could project the patterns and 
record the photodetector signals synchronously. The 
exposure time of each image was 0.1 s, and the patterns 
were switched at eight frames per second.

4.  Image reconstruction

Using two groups of orthogonal sinusoidal patterns, the 
scene’s illumination field was changed a total of 64 × 64 × 2 
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Figure 4.  (a) Full-colour reconstructed image of the scene, 
obtained by combining the separate reconstructions from the (b) 
red, (c) green and (d) blue spectral data. (e)–(h) are the density 
distributions of the cosine transform spectra acquired for the 
three colours with different spectral coverages of 1.56, 9.76, 25 
and 100%, with each row corresponding to red, green and blue, 
respectively. (i)–(l) are the reconstructed combined R, G, B images 
with the same spectral coverages of (e)–(h), respectively.

Figure 5. PSNR curves of the three different image reconstruction 
methods CIDCT R, CIDCT G and CIDCT B versus spectral coverage.
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