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ABSTRACT: Video-rate super-resolution imaging through bio-
logical tissue can visualize and track biomolecule interplays and
transportations inside cellular organisms. Structured illumination
microscopy allows for wide-field super resolution observation of
biological samples but is limited by the strong extinction of light by
biological tissues, which restricts the imaging depth and degrades
its imaging resolution. Here we report a photon upconversion
scheme using lanthanide-doped nanoparticles for wide-field super-
resolution imaging through the biological transparent window,
featured by near-infrared and low-irradiance nonlinear structured
illumination. We demonstrate that the 976 nm excitation and 800
nm upconverted emission can mitigate the aberration. We found
that the nonlinear response of upconversion emissions from single nanoparticles can effectively generate the required high spatial
frequency components in the Fourier domain. These strategies lead to a new modality in microscopy with a resolution below 131
nm, 1/7th of the excitation wavelength, and an imaging rate of 1 Hz.
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■ INTRODUCTION

Fluorescence microscopy has been widely used to visualize
cellular structures, biomolecular distributions, and biological
processes.1,2 However, many subcellular structures, organelles,
and molecular analytes are typically smaller than a few
hundreds of nanometers, which cannot be resolved by
conventional microscopy due to the optical diffraction limit.
Super-resolution microscopy techniques, including stimulated
emission depletion (STED) microscopy,3 single molecule
localization microscopy,4,5 super-resolution optical fluctuation
imaging (SOFI),6 and structured illumination microscopy
(SIM),7−9 have been developed to bypass this limitation.
SIM typically requires closely spaced periodic patterns to

down-modulate the high spatial frequency information in the
sample so that with the support of optical transfer functions
the high frequency information can be reconstructed from a
series of images obtained from the patterned illuminations at
various orientations. SIM typically offers the high-speed
imaging with a resolution at around 1 of the excitation
wavelength. When the high excitation power is used, the
nonlinear saturated photoresponse can be explored to further
improve the resolution of SIM in the regime of 50 nm10 and
resolve subcellular structures.11 New advances made in the
denoising process and modified excitation conditions have
been applied to SIM, so that nonlinear SIM,10−12 Hessian-
SIM,13 and grazing incidence SIM14 have been recently
developed with high imaging speed for the observations of

ultrastructures of cellular organelles and their structural
dynamics, such as mitochondrial cristae.13

The next challenge is to apply these techniques for
applications, like deep-tissue imaging and nanomedicine
tracking, as the strong extinction aberrates the structured
illumination patterns, introduces undesirable out-of-focus light,
and decreases sample’s emission intensity, deteriorating the
imaging resolution and imaging speed.15 To address this
challenge, near-infrared excitation has been implemented to
mitigate the aberration. Two-photon16 or multiphoton
excitation17 in conjugation with spot scanning SIM has been
reported to improve the imaging depth through tissue, but at
the price of low speed caused by the spot scanning scheme
(typically 1 Hz imaging rate for a 50 μm × 50 μm area).
Organic fluorescent dyes and proteins are the most common
imaging probes for SIM, because of their outstanding staining
and specific targeting ability to organelles.8,13,18,19 Never-
theless, these probes require the tightly focused and high-
power pulsed laser to activate the multiphoton absorption
process, due to their small multiphoton absorption cross-
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section.20 The required high excitation power, especially by
nonlinear SIM, limits the long-duration visualization of
subcellular structure in living cells.
Upconversion nanoparticles (UCNPs) are an emerging

near-infrared (NIR) imaging probe for optical imaging.
UCNPs contain multiple lanthanide sensitizer ions to absorb
NIR photons and activator ions to upconvert photon energy
and emit light, and both types of ions have multiple long-lived
intermediate excited states and can be highly doped in the
typical fluoride nanocrystal host. Hence, these nanoparticles
can effectively absorb NIR photons and sequentially convert
them into the shorter wavelength ultraviolet, visible, and NIR
photons through the nonlinear energy transfer process.21,22

Benefiting from their unique nonlinear response, nonbleaching
nonblinking photostability, and anti-Stoke excitation−emission
properties,23−27 UCNPs have been recently discovered as a
new library of super-resolution imaging28−32 and single
molecule tracking probes.23,27,33 We have recently demon-
strated a near-infrared emission saturation nanoscopy method
that can detect single nanocrystals through 93 μm thick tissue
with 50 nm resolution.29,34 However, these super-resolution
imaging modalities require focused doughnut beam excitations

that suffer from low scanning rates and therefore are not
suitable for fast super-resolution imaging.
Here we report a strategy of upconversion nonlinear SIM

(U-NSIM) toward fast super-resolution imaging through thick
biological tissues. We apply ytterbium (Yb3+) and thulium
(Tm3+) codoped UCNPs as the imaging probe that emits
upconverted NIR emissions at 800 nm upon NIR excitation at
976 nm, both within the transparent biological window, to
extend the imaging penetration depth. Setting the 976 nm
structured pattern excitation can not only mitigate the
aberration on the pattern but also easily activate UCNPs to
emit bright NIR photons. The unique nonlinear photoresponse
of UCNPs enables the onset of an efficient nonlinear mode on
SIM for obtaining higher-frequency imaging resolution. We
further demonstrate that fine-tuning of the doping concen-
trations in UCNPs can modify the nonlinearity of the photon
response and to further improve the optical resolution to 1/7th
of the excitation wavelength.

■ RESULTS AND DISCUSSION
To evaluate the upconversion strategy to achieve fast super-
resolution imaging through thick tissues, we first examine the

Figure 1. Scheme and advances of upconversion nonlinear SIM for super resolution imaging through thick tissues. (a) Light extinction spectra of
50 μm thick mice brain and liver tissues, measured by a commercial ultraviolet−visible spectrophotometer. Inset: single lanthanide-doped UCNPs
with a network of thousands of codoped ytterbium ions (Yb3+) as sensitizers and thulium (Tm3+) ions as activators can absorb 976 nm excitation
photons and convert them into 800 nm emissions with nonlinear photoresponse. (b) Schematic diagram of the SIM setup. A digital mirror device
(DMD) is used here to generate structured illumination patterns at the sample plane. The fluorescence image under the structured illumination is
captured by an EMCCD. (c) Under the sinusoidal structured excitation at 976 nm, the comparison of fluorescence images collected through the
emission bands of 535 ± 25 and 808 ± 10 nm without and with 80 μm thick brain tissues. For comparison purposes, the emission intensities from
the same sample area through the bands of 535 and 800 nm have been adjusted to reach the same level by tunning the excitation power. Scale bar:
5 μm. (d) Line profiles of Fourier spectra (on a logarithmic scale) of the diagonal cross section profiles in (c).
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light penetration depths for the UCNPs’ multicolor emissions.
Under the continuous wave (CW) excitation condition at a
power density of ∼10 kW/cm2, UCNPs can effectively convert
the energy from 976 nm photons into the two-photon state
3H4 that emits 800 nm photons (Supplementary Note 3 and
Figure S2), where the tissue has less extinction. Figure 1a
shows the light extinction spectra of the 50 μm thick mouse
brain and liver tissue slices, which shows better penetration
ability for the 800 nm emission and 976 nm excitation
compared with that in the visible wavelength range. Figure 1c
shows the comparison penetration abilities of structured
patterns at 535 and 800 nm emission bands. In this
experiment, we mix the two types of UCNPs (NaYF4: 2%
Er3+, 20% Yb3+ and NaYF4: 2% Tm3+, 20% Yb3+) and
uniformly disperse them onto the glass slide (Supplementary
Note 1 and 2). Then we use a 976 nm sinusoidal structured
pattern to excite the layer of UCNPs and image the emission
patterns (Figure 1b, Supplementary Note 4, and Figure S4).
Without the tissue, marked as 0 μm, both 535 nm (from Er3)
and 800 nm (from Tm3+) emissions produce the desirable
structured emission patterns. When an 80 μm tissue slice is
placed on top of the UCNPs layer, the 535 nm emission
pattern is heavily distorted and almost loses its structure
information, while the 800 nm emission pattern mitigates the
scattering and well keeps its pattern. We further quantify the
information preserved in the emission patterns by Fourier
domain image analysis (Figure 1d). Both the diagonal cross

sections of the Fourier spectra of the emission patterns from
two bands at 0 μm show clear peaks, indicating sufficient
ability to transfer the designed spatial frequencies. However,
the 535 nm emission pattern loses this spatial information with
the 80 μm tissue, while the 800 nm emission pattern well keeps
the spatial information. This indicates that the upconversion
SIM method using both 976 excitation and 800 emission
bands at NIR is superior to visible emissions as it can send and
detect the structured excitation and emission patterns through
the thick tissue.
SIM operated in the linear response regime of the

fluorescence probes generally enhances the resolution by a
factor of approximately 2, compared with that in wide-field
microscopy. Nonlinear operation of SIM requires high
excitation power density for the probes to produce nonlinear
photoresponses, e.g., fluorescence saturation10 and fluorophore
depletion,11,12 to surpass the resolution limitation of linear
SIM. Nonlinear SIM can theoretically produce an unlimited
factor of enhancement on the imaging resolution.10 The
photon upconversion process is a typical nonlinear process as it
requires multiphoton excitation to emit the multicolor
upconversion emissions from ladderlike multi-metastable
excited states of rare-earth ions. We first measure the 800
nm emission saturation curves from single nanoparticles
(Supplementary Notes 1−3 and Figure S3). Figure 2a shows
the obvious nonlinear photoresponse behaviors of UCNPs,
and the nonlinearity (the rising-up slope) increases with the

Figure 2. Saturation intensity curves of the 800 nm emissions from single UCNPs. (a) Normalized emission saturation curves of a single UCNP
(NaYF4: 20% Yb3+, x% Tm3+ nanoparticles, x = 0.5,1.5, 2, 4, and 8) under 976 nm excitation. (b) 800 nm emission saturation curves obtained for a
single UCNP (NaYF4: 20% Yb3+, x% Tm3+ nanoparticles, x = 2, 3, 4, 6, and 8). (c) 800 nm emission saturation curves obtained for a single UCNP.
(NaYF4: x% Yb3+, 4% Tm3+ nanoparticles, x = 20, 40, and 80) (d) Fourier transforms corresponding to the intensity profiles measured with
different doped UCNPs. The inset (right middle) shows the cross section profiles of measured emission patterns.
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emitter doping concentration. A high concentration increases
the energy transfer rate from Yb3+ to Tm3+ and boosts the
cross-relaxation between Tm3+ ions, thereby enhancing the
nonlinearity of the photoresponse. However, a higher doping
concentration often leads to lower emission intensity if mild
excitation power, e.g., 4 kW·cm−2, is used in SIM (Figure 2b).
We therefore select the midlevel doping concentration of 4%
to compromise between high nonlinearity and high brightness
to achieve an optimized imaging quality. We find that the
emission intensity can be further improved by tuning the
doping concentration of Yb3+ ions to 40% (Figure 2c), as the
optimized Yb3+ concentration can increase the energy transfer
rate from Yb3+ to Tm3+. Figure 2d reveals the resolution-
resolving power of nonlinearity for UCNPs with different
concentrations by measuring the amplitude of high-frequency
harmonics (H) in the Fourier transform of their emission
pattern (Figure 2d) under a sinusoidal excitation pattern.
Compared with the diffraction-limited wide-field imaging
result under uniform illumination (H = 0) and linear SIM
(H = 1), the additional harmonics in U-NSIM (H ≥ 2)
improves the lateral resolution to ∼ λ/[2NA(H + 1)], where
NA stands for the numerical aperture.10,12 Clearly, UCNPs
with higher Tm3+ concentration have stronger harmonic peaks,

with H = 3 for 2% and 4% Tm3+ and H = 4 for 8% Tm3+. Here
we identify that 4% Tm3+ 40% Yb3+ codoped UCNPs are the
best suitable probes for U-NSIM, as they provide H = 2
harmonics, while they require lower excitation power than that
with 8% Tm3+ doped UCNPs.
We further examine the resolving power of U-NSIM by

resolving single UCNPs on a glass slide (Figure 3). With the
schematics of the optical system shown in Supplementary
Figure S4, a DMD is used to generate the excitation pattern,
and a 60× water immersion objective (NA = 1.27) is used to
direct excitation and collect the emission (Supplementary Note
4). Figure 3a shows a typical U-NSIM image compared with
the diffraction-limited wide-field excitation image across the
field of view (FOV) of 32.3 μm × 32.3 μm, with the
comparison images of the 8 μm × 8 μm area (orange square)
by wide-field (WF) microscopy (Figure 3b), Wiener
deconvoluted result of WF (Figure 3c), upconversion linear
SIM (U-LSIM, Figure 3d), and U-NSIM (Figure 3e). To
quantify the resolving powers by different modalities, Figure 3f
shows the comparison results in resolving a pair of UCNPs
separated by a distance of 320 nm, by WF, deconvolution,
linear SIM, and nonlinear SIM (Supplementary Figure S5).
Here, U-NSIM (1) is reconstructed from 15 raw frames (3

Figure 3. Super-resolution imaging reconstructions of upconversion nanocrystals. (a) Wide-field (left) and super-resolution (right) images of the
4% Tm-doped UCNPs. Scale bar: 2 μm. (b−e) Comparison imaging results of a selected area (orange frame) with different imaging modalities: (b)
wide-field microscopy; (c) Wiener deconvolution; (d) linear SIM; (e) nonlinear SIM. Scale bar: 2 μm. (f) Line profiles of the resolved particles in
the upper-left corner of (e) with a range of imaging methods. (g) Comparison imaging results of the green framed area. (h) Line profiles of two
UCNPs at the lower right corner in (g). Scale bar: 1 μm. The diameter of the UCNPs is 40 nm (confirmed by TEM). The reconstruction processes
were performed by using both fairSIM35 in imageJ36 and a written MATLAB code. The illumination power density is 4 kW/cm2.
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orientations and 5 phase shifts), and U-NSIM (2) requires 25
raw frames (5 orientations and 5 phase shifts). U-NSIM (2+)
stands for NSIM with a Richardson−Lucy deconvolution
process (iteration = 10). By imaging another 2.9 μm × 6.5 μm
area (green rectangle), Figure 3h shows that the NSIM
modality can resolve two adjacent nanoparticles with a spacing
of 161 nm and full width at half-maximum of 124 and 131 nm
(∼λexc/7.5), measured by Gaussian fitting of the line profiles.
Figure 4 further examines the resolving powers of U-LSIM

and U-NSIM modalities through thick biological tissues. In
this experiment, as shown in Figure 4a, we fabricate
nanochannel structures on a SiO2/Si substrate (300 nm
thermal silicon dioxide layer on top of 500 μm Si) with the line
spacing of 0.35 ± 0.02, 0.36 ± 0.02, and 0.65 ± 0.02 μm, using
a standard EBL process. The nanochannels are filled with
UCNPs and covered by 51.5 μm thick mouse liver tissue.
Figure 4b shows the comparison fluorescence images of the
UCNP stripe pattern using the wide-field (without the tissue
cover) and U-LSIM imaging modalities. While the deconvo-
luted wide-field images fail in resolving the stripes below the
diffraction limitation (∼384 nm), U-LSIM clearly resolves the
stripe pattern. The cross section of the pattern (Figure 4c)
demonstrates that the resolution can be further enhanced by
U-NSIM. Figure 4d shows the improved resolution of the SIM
image through the thick liver tissue, compared with the wide-
field image. Due to the reduced extinction of light for NIR
wavelength and bright UCNP emissions, an exposure time of
40 ms per frame is sufficient for U-LSIM to resolve the pattern
and an imaging rate of 2.8 Hz for U-LSIM has been achieved.
U-NSIM can further increase the resolution and enhance the

signal-to-noise ratio, as shown in Figure 4e, and the imaging
rate of 1 Hz has been achieved in this work.

■ CONCLUSION
In conclusion, we demonstrate the upconversion nonlinear
SIM strategy as a new modality for super-resolution imaging
through thick tissue. We find that the nonlinear photoresponse
properties of UCNPs can produce high-frequency harmonics
in the Fourier domain of the imaging plane, enabling nonlinear
SIM with mild excitation power. This work suggests a new
scope in probe developments for super-resolution microscopy.
The apparent advance by NSIM using UCNPs lies in the
improved imaging resolution using the low power CW laser
excitation, which can be used for subcellular dynamic tracking
of single nanoparticles through deep tissue. Compared with
our recent works on single point scanning nanoscopy,29,34 U-
NSIM offers a much higher frame rate. In this work, the
excitation power density of 4 kW/cm2 at 976 nm only leads to
a temperature increase smaller than 3 °C on the tissue
sample,37 which has been approved as safe for long-term single
nanoparticle tracking experiment in living cells.23 Increasing
excitation power density can certainly improve the imaging
speed, but the high power density may induce a strong
photothermal effect. Optimizing the brightness of UCNPs
under low power excitation conditions and applying a
denoising algorithm, e.g., Hessian deconvolution, to U-NSIM
can further improve the imaging speed and resolution. The
USIM strategy can be directly adapted to enhance the imaging
penetration depth in light sheet based SIM,38 adaptive
optics,39,17 and reconstruction algorithms.40 Though specific
labeling of UCNPs to the subcellular structures in live cells

Figure 4. Evaluation of the image resolving power of upconversion SIM through thick mouse liver tissue. (a) Schematic diagram of the imaging
specimen where the UCNPs are dispersed in the nanochannel structures on a SiO2 substrate covered with 51.5 μm thick mouse liver tissue. (b)
Comparison of images of the specimen by Wiener deconvolution and U-LSIM without covering the tissue slice. The scale bar is 2 μm. (c) Cross
section profile of one line in (b) indicated by the white arrows with different methods: wide-field microscopy, Wiener deconvolution, U-LSIM, and
U-NSIM. (d) Image of the specimen through a 51.5 μm liver tissue slice by Wiener deconvolution (up) and U-LSIM (bottom). Scale bar is 1 μm.
(e) Cross section profile of one line in (d) indicated by the white arrows with different methods. The illumination power density is 4 kW/cm2.
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remains a challenge, the recent progress with functionalization
of UCNPs shows promise in using labeling and single particle
tracking to utilize multimodality and multiplexing super-
resolution imaging of biomolecules of interest in a live cell
environment.21,33
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